BDR SEMINAR via Zoom

Kousuke Mouri

Tewhey Lab, The Jackson Laboratory

Tuesday, May 31, 2022

Expanding massively parallel reporter assay to identify human variants that impact regulatory elements

Summary

Genome wide studies have identified a number of non-coding loci associated with human traits. However, pinpointing causal variant(s) from a haplotype block with high linkage disequilibrium remains difficult. To address this challenge, we applied Massively Parallel Reporter Assay (MPRA), which characterizes non-coding elements at scale and measures allelic differences of their activity.

First, we performed MPRA to test ~18,000 variants associated with autoimmune diseases. By examining variants that showed allele specific activity and chromatin accessibility in T cells, we identified putatively causal variants that enriched for statistically fine-mapped variants. To validate this prioritizing method, we deleted an orthologous sequence of rs72928038 in mice, resulting in reduced expression of genes for T cell stemness and higher propensity to differentiate effector T cells upon acute viral infection.

Second, to characterize repressive elements, for which standard MPRA is not optimized, we also engineered MPRAduo that detects the interaction of two non-coding elements in a vector. We comprehensively characterized human RE1 silencers under combinations with different enhancers, identifying ~1,500 variants that impact RE1 silencer. Furthermore, we found principles of REST binding motif for functional silencer, cofactor binding profile, and grammar for non-canonical REST binding motifs.

Host: Tomoya Kitajima Laboratory for Chromosome Segregation, BDR Contact: bdr-mtg@ml.riken.jp

RIKEN Center for Biosystems Dynamics Research (BDR)